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LIQUID CRYSTALS, 1989, VOL. 6, No. 5, 553-563 

Theory for the band structures in liquid crystal polymers under shear 

by B. J. A. ZIELINSKA? 
Institut fur Festkorperforschung, KFA, D-5 170 Julich, F.R. Germany 

and 
A. TEN BOSCH 

Laboratoire de Physique de la Matikre Condensee, CNRS L.A. 190, Parc Valrose, 
06034 Nice Cedex, France 

(Received 11 December 1988; accepted 13 June 1989) 

A theory for the shear flow instability in a liquid crystal aligned by the initial 
flow is presented. We have investigated a periodic distortion of the director and the 
velocity field in the plane perpendicular to the velocity gradient. We present 
solutions for the director and velocity field and make a connection with the optical 
image observed under a polarizing microscope. We include the convective terms 
in the basic equations neglected previously, and show that they alter the values of 
the critical parameters, but do not change the instability mechanism. Comparison 
with experimental data is made and further experiments are suggested. 

1. Introduction 
It is well-known that sheared liquid crystal polymer systems demonstrate typical 

striped textures under the polarizing microscope [ 1-81. These textures are primarily 
observed as a relaxation phenomenon in the liquid film shortly after the shear stress 
has been removed. Often the structure persists into the dried solid as in commercially 
spun fibres of liquid crystal polymers [6]. A clear explanation of this phenomenon has 
not yet been given. Careful optical experiments have shown that the textures occur 
due to a depth dependent distortion of the average direction of orientation of the 
macromolecules perpendicular to the shear plane [2] .  The importance of various 
parameters has been indicated: the molecular weight [3], the sample thickness [5], the 
shear rate [l], the time during which the shear stress was applied [8] and the total shear 
deformation [ 5 ] .  A connection with the rheological properties has also been demon- 
strated and in particular to the first normal stress difference which seems to change 
sign when the band structures appear [l]. 

Various theoretical models have been proposed. Orientation of the directors 
within alternate planes by creation of alignment-inversion walls has been invoked [ 11. 
Subsequent experiments seem to indicate rather a smooth transition of the orientation 
between domains of a given direction [2]. The tumbling instability has been suggested 
as an explanation [4] but would not fulfill this condition. In liquid crystal polymers, 
novel instabilities of the director pattern have recently been observed in electric and 
magnetic fields. These were shown to occur under certain conditions for the Frank 
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554 B. J .  A. Zielinska and A. ten Bosch 

elastic constants expected in polymeric systems [9]. It has been proposed that a similar 
mechanism could explain the band textures in a shear flow field. 

As yet, due to the difficulty of observing the band pattern during flow, it is not 
certain, experimentally, whether the band textures occur because of the onset of an 
instability at a certain critical shear threshold. Some authors consider a rather pure 
relaxation process via a periodic director distortion after the shear flow [7] has ceased. 
According to this picture the macromolecules are stretched in the field and then relax 
back to a coiled state. It is not clear however which mechanism in the relaxation 
process is responsible for the observed periodic structure. On the other hand recent 
experiments indicate that the shear threshold is inversely proportional to the sample 
thickness [5]. This agrees with the scaling argument presented in the following sections 
(see relations (3.1)) and thus supports the instability idea. 

Hydrodynamic instabilities in conventional liquid crystals have been well studied 
and good agreement between experiment and theory has been obtained. The theory 
is based on the Leslie-Ericksen formulation of orientation dependent viscoelasticity 
and primary distortion of the director within the shear plane was considered [lo]. In 
the following sections we shall use the same formalism to describe polymer liquid 
crystals as well. We have investigated [l 11 the existence of an instability producing a 
periodic pattern with a distortion perpendicular to the shear plane as observed in the 
optical experiments. We use the Leslie-Ericksen theory which is successful in describ- 
ing electrohydrodynamic instabilities in polymer liquid crystals [ 121 and should 
contain the essential physical phenomena. We work within the framework of linear 
stability analysis and obtain the critical shear rate and the critical wavevector for the 
instability to occur. We present here the total velocity and director fields. We also 
make a connection with the optical properties, such as the scattered light intensity 
observed by a polarizing microscope. 

2. The model 
We consider a layer of nematic fluid enclosed between two parallel plates. One of 

the plates moves relative to the other with a constant velocity inducing a constant 
shear rate, s. Such a system is described by the usual equations for the nematic liquid 
crystal [ 101 consisting of the torque and force conservation equations. The mcmentum 
conservation is 

Here re is the elastic torque defined by 

and 

p o t  = r e  + rv = 0. (2.1) 

re = n x (h, + h, + hB) (2.2) 

hs = K,V(V* n), 

h, = -K , {AV x n + V x (An)}, 

h, = K,{B x V x n + V x (n x B)}, 

A = n . ( V  x n), B = n x (V x n) 

are components of the molecular field for the splay, twist and bend distortion, 
respectively. Here n denotes the director field, and K,  , K2 and K3 are elastic constants. 
r" is the viscous torque defined by 

r" = - n  x h,, (2.3) 
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Band structures in liquid crystal polymers 555 

where h, is the viscous molecular field 

and 
h, = y,N + y , A - n ,  

dn d 
N = - dt - +(v x v) x n, - dt = a, + v . v ,  

A, = +(ajvj + 8,vJ 

Here v is the velocity field, y ,  = a3 - a2 ,  y2 = a3 + az,  a2 and a3 are the rotational 
viscosities. The force conservation equation has the form 

where 0; is the viscous part of the Leslie-Ericksen stress tensor 

0; = a l n , n j ( n k A k / n / )  + %%3 + a3n,& + %Alj + %nlnkAkJ + %jAlknknj; 
a, . . . a6 are the Leslie coefficients, p in the hydrostatic pressure and e in the density. 
a; is the elastic stress tensor, which is at least second order in a,nk. Since in what 
follows we shall be concerned only with linear stability, a; will be omitted. 

In the following we assume that a3/a2 > 0. In this case these equations have a 
steady state solution: t g 4  = J(a3/a,) independent of the shear rate, where 4 is the 
angle in the plane of the velocity gradient formed by the director and the shear 
direction. In the present work we are concerned with a layer of fluid unbound 
horizontally, but of finite thickness in the perpendicular direction. We neglect 
boundary effects [I41 and assume that the liquid crystal molecules are basically free 
to form an angle with the bounding plates. The layer of fluid is taken to extend in the 
xy plane. We denote small perturbations from the steady state solution by 

(4, 4, 4 )  = (O,cos4, sin41 + (nx ,  n,, n,) 

tJ = (0, SZ, 0) f (vx7 v,, V z > .  

In order to perform the linear stability analysis we linearize equations (2.1) and (2.4) 
in perturbations around the steady state. As the result of linearization we obtain 
two decoupled sets of equations: one for n, and v, and the other for the y and z 
components of the velocity and director fields. The equations for the x components 
have been derived previously [ l  11 and are 

[ - ( a 3  - a,)(a, + szd,) + K,D? + K3D; + a2stg4]n, - C I ~ D + V ,  = 0, 
(2.5 a)  

[a2D+/s(d, + sza,) + a, cosq5sin4D+ + ta6(sin4d, + cos&3,) + +a3D-]snx 

+ [ -@(d l  + ,,a,> + +(a5 - 0r2)D: + $~14(8: + a : ) ] ~ ,  = 0, (2.5b) 

where 

and 

Here we have used the fact that the y and z components of the total torque are not 
independent to first order: ry / s in  4 = - ry / cos  4. In equations (2.5 a)  and (2.5 b) 
and in what follows we drop the derivatives with respect to x, since we are only 
interested in solutions uniform in the x direction. 
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556 B. J. A. Zielinska and A. ten Bosch 

Using the fact that nz = 1 we conclude that to first order in the perturbations n,, 
and n, are not independent: cos &,, = sin &zz and find for the x component of the 
total torque 

r:Ot = - {2cos4sin4[sy2 + ( K ,  - K3)i?r,,] + .[cos2#K3 + sin24K,]8; 
+ [sin2 @K3 + cosz &K,]aS}n,/sin4 + yldyv, 

+ y,cos~sin&(a,v, - d,v,) = 0. 

The y and z components of the force equations have the form 

where a:, (i, j = y ,  z )  depend on nu, n,,  ZJ,, and vZ. The corresponding expressions for 
the components of the stress tensor are rather lengthy and are given in Appendix A. 

3. Solution and results 
As before [ 1 I]  we introduce the dimensionless variables 

where a is the sample thickness. If the convective terms, which depend explicitly on 
z are neglected in equations (2.5 a-b), the solutions of equations (2.5 a-b) periodic in 
the shear direction are of the form 

where q, are the roots of the characteristic polynomial. The solution in the presexe 
of the convective terms and the influence of the terms explicit in z on the values of 
the critical parameters are discussed in Appendix B. Inserting equation (3.2) into 
equations (2.5 a-b) and using the boundary conditions 

?jX = n, = 0 at Z = k +, (3.3) 
we obtain the shear rate d as a function of the wavevector k and the frequency 5. We 
found [I I], that for a wide range of parameters of interest the instability is stationary, 
i s .  5 = 0. Finally S was minimized with respect to k, giving the critical values s,, and 
k,, for two cases: the liquid crystal 4-methoxybenzilidene-4’-n-butylaniline (MBBA) 
[I 31 and the polymer liquid crystal in solution polybenzyl glutamate (PBG) [15]. We 
found for a sample of thickness of 100 ,urns,, = 19.5 s-’ and k,, = 3.1 for MBBA and 
s,, = 0.064 s-l and k,, = 0.85 for PBG in solution. This is in agreement with experi- 
ments which show that a high degree of polymerization favours the formation of band 
textures [3]. 

Using the values of the critical parameters calculated from equations (2.5 a-b) for 
n, and vx we now construct the solutions for ny, n,, vy and v , .  Equations (2.6) and 
(2.7 a-b) together with the incompressibility condition 

d,v, + a,v, = 0 (3.4) 
form a set of four equations for the unknown functions ny,  v,,, v, and p (n, and 
ny are not independent to first order and n, sin 4 = ny cos 4). Since we are only 
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Band structures in liquid crystal polymers 557 

interested in solutions periodic in the y direction we can write, similarly to equation 

where rj are the roots of the sixth order characteristic polynomial obtained by 
substituting equations (2.6), (2.7 a) and (3.4) into (2.7 b). Here we have already taken 
into account that 5 = 0. For a given choice of Ki and ai solution (3.5) depends on s,, 
and kc,. The amplitudes B, can be calculated by inserting equation (3.5) into the 
boundary conditions for nu, vY and vZ. Assuming stick boundary conditions for the 
velocity field we impose 

T I y ( - + )  = ZJ Y Z  (I) = V,(-+) = ?I,(+) = 0. (3.6) 
We assume that the director can adjust at the plates and therefore impose free 
boundary conditions for the director in the shear plane 

ny/n,  = -(tgq5-' for 5 = f 3. (3.7) 
We have calculated the director and velocity fields ny,  n,, vy and V, for the critical 

shear rate and critical wavevector, the elastic constants Ki and the Leslie coefficients 
cli corresponding to the case of a lyotropic polymer liquid crystal in solution namely 
PBG. The resulting director profile in the xy plane (for Z = -0.25) is shown in 
figure 1. In this figure we can see a periodic change of the director in the y direction, 
as assumed in equations (3.2) and (3.5). Such a director pattern is consistent with the 
optical image obtained from the band structure, as will be discussed later. The 
corresponding velocity profile has a similar form and is also periodic in y ,  but shifted 
in phase with respect to the director field. In figure 2 the velocity field in the shear 
plane (JU plane) due to the perturbations around the steady state constant shear 

- . . . . . \ -- . . . . . . . . . . - . \ 

- _  

- .... .... .... .... .... .... .... .... .... ..\\ .... .... .... .... .... .... .... ..\. 
2--> >-> 

T . . . . . . 
\ . . . . \ 

\ . . . . . . 

- \\. \\. 
\ \ \  \\. .\\ \\. ... -..\ \\. .\. ... .\. ... 
\ \ \  ... \.\ \\. ..\ -.\. - -. . 

Figure 1. Director field in the xy plane (perpendicular to the shear plane) for I = - 0.25. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . _ . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

- _ .  . . . . .  - . . ,  . . , ,  

, 1 1 1  
* , , I  . ,  , . . . . .  _ . . _  . . . .  
. . . .  

, , .  . . .  . . -  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Figure 2. Perturbations in the velocity field around the steady state constant shear profile in 
the y z  plane (the shear plane). 
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558 B. J. A. Zielinska and A. ten Bosch 

Figure 3. Director field in the y z  plane (the shear plane). 

profile is shown. It can be concluded from this figure, that the band structure 
instability will impose a roll pattern on the primary constant shear velocity field. 
Finally in figure 3 the director pattern in the shear plane is presented. The deviations 
from the steady state shown in all of the figures are in arbitrary units. The linear 
theory presented here permits us to calculate the solutions up to a constant. Conse- 
quently in figures 1, 2 and 3 we have chosen the units such that the deviations from 
the steady state pattern are clearly visible. 

If the director cannot adjust at the plates, the boundary conditions (3.7) become 
n, = n, = 0 at Z = ’. 1/2 and only the trivial solution (i.e. w, = w, = n, = n, = 0) 
is possible. In this case the velocity and director profile in the y z  plane are not 
perturbed. Careful consideration of surface effects is necessary to choose the solution 
which corresponds to a given director pattern. Experimentally this would be defined 
by spontaneous anchoring at the surface or pretreatment of the glass plates. 

4. Optical properties 
The image observed in a polarizing microscope can be expressed [16] as 

W) - I(W * P) - AI2, (4.1) 

where P is the unit vector of the direction of the polarizer, A that of the direction of 
the analyser and a(r)  is the polarization tensor of the sample. Let xy be the plane of 
observation for crossed polarizers A = (1, 0), P = (0, 1). The polarization tensor of 
the sample is 

a,, = ~ 6 ,  + a,nfnj, 

where M is the average and a, the anisotropy of polarization. The scattered light 
intensity at position ( y ,  z )  is then 

Flow alignment is generated under shear but in real samples the degree of orientation 
is not perfect, and the sample appears birefringent. Perfect alignment gives the total 
scattered light intensity of the sample relative to the perturbation n, as 

~ ( y )  - M, cos’ 4 dz /n , ( y ,  z)l’. s (4.4) 

We have evaluated this integral using the expression for n, obtained in $3 and the 
result is shown in figure 4. A smooth periodic function is obtained, in agreement with 
optical measurements. The image is given by a series of parallel dark and light lines 
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Figure 4. Scattered light intensity according to equation (4.6) (in arbitrary units). 

perpendicular to the shear direction. Note that the director fluctuation following from 
our theory is of the form 

n,T = a(z)cosky + b(z)sinky = sin(ky + $(z)). (4.5) 

A large depth dependent phase shift $(z) could blur or even destroy the periodicity 
of the image in the polarizing microscope during shear. If n,(z) relaxes rapidly on 
stopping the shear, the pattern would appear then as a relaxation phenomenon. 

In microscopy experiments the sample can be rotated by an angle SZ relative to the 
analyser and the change in the transmitted light intensity can be observed. The 
formula for the scattered light intensity in this case is 

I (  y )  - a, sin4 4 dz sin’ (2p( y ,  z)), s 
where tg f l  - n,/sin 4 if the analyser is aligned in the shear direction and f l  + f l  + SZ 
on rotation. The periodic variation in the orientation of the optic axis can then be used 
to explain the motion of the extinction bands on rotation of the crossed polars, the 
variation of the total intensity &I( y) and the analysis of the conoscopic [2] image. 

5. Discussion 
We have presented here a theory for band structures in liquid crystal polymers 

under shear. These band structures are a common phenomenon in liquid crystal 
polymers and occur in different geometries and for different types of molecules. 
It is plausible therefore to assume that the origin of this phenomenon is not 
material specific. In the present work we argue [l I ]  that for simple shear flow the 
band structures are due to an instability mechanism present in the Leslie-Ericksen 
equations. Band structures have also been observed in other types of flows, as for 
example elongational flow. It remains to be shown if an instability similar to the one 
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presented here could be found for other types of flow. We have calculated the critical 
shear rate and wavevector for this instability and present the director and velocity 
fields. The Leslie-Ericksen formulation does not taken into account the viscoelastic 
nature of the macromolecules. However, as for other hydrodynamic instabilities 
[18, 191 we can argue, that the viscoelastic properties will very likely alter the values 
of the critical parameters, but will not destroy the instability mechanism. In the 
previous calculation [I 11  the inertial terms in the equation were neglected. In the 
present work we have included these terms and have shown that they introduce a 
quantitative change to the critical parameters, but qualitatively the instability remains 
the same. Our calculations show that the values of the critical shear and wavevector 
depend strongly on the choice of the elastic constants and the anisotropic viscosities. 
As for most polymer liquid crystals these parameters are not very well-known and the 
values for s,, and k,, predicted here have only a qualitative character. In particular we 
hope that more accurate values of these parameters and taking into account the 
viscoelastic properties of the polymers would result in larger values of the critical 
wavevector, in better agreement with the experimental data. 

Many of the liquid crystal polymer systems are cholesteric and not nematic as 
assumed here. The cholesteric structure is expected to unwind as the molecules align 
on application of shear, leading to a nematic phase. However, cholesterics usually 
have a lower elastic constant for twist (K2) ,  than nematics. In our theory lower K2 
favours the formation of the band structure by lowering the value of the critical shear, 
as can be seen from the scaling relations (3.1). The out of shear plane distortion of 
the director (i.e. non-zero n,) is a twist and is essential for the instability to occur. 
Therefore cholesterics are expected to form the bands at lower shear than nematics. 
Secondary structures have been observed in cholesterics upon relaxation of the band 
pattern [20]. These structures may be due to the inherent periodicity in these materials 
(the pitch of the helix). The rheology of cholesteric polymers is still being developed 
but a straight forward extension of the present model could be envisaged. 

The solutions for the director and velocity fields in the shear plane presented here 
depend on the boundary conditions for the director at the plates. To our knowledge 
the experiments on polymer liquid crystals in which the band structures have been 
observed did not use pretreated plates. We have therefore imposed free boundary 
conditions on the director in the shear plane. Mechanical pretreating plates or 
orientation in a magnetic field could also be used in samples of polymer liquid crystals 
and its influence on band forming could be determined experimentally. In addition the 
dependence of the critical shear rate [5 ]  and the critical wavevector on the thickness 
of the sample should be elucidated further. In particular, the scaling relation (3.1) 
predicts that the critical shear rate decreases as the square of the sample thickness. 

Different boundary conditions for the director in the out of shear plane could be 
proposed. Here we have used stick boundary conditions for n,, amounting to n, being 
zero at the plates while the derivative aznx is left free to adjust. Alternatively for the 
case of unpretreated surfaces we could study torque free boundary conditions in 
which the derivative azn, is put to zero at the plates and the director is left free to 
adjust. 

Finally it would be interesting to study the band structures in polymer liquid 
crystals theoretically and experimentally in geometries different from the simple shear 
geometry. The Taylor column is a suitable candidate, because of the existing theoretical 
framework and a possibility of continuous shear, which should allow the observation 
of the bands under shear conditions. 
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Appendix A 
The components of the Leslie-Ericksen stress tensor can be calculated from the 

definition of 0; following equation (4) 

o;, = { a I  C O S ~  $sin4 + y 2  cos+zd, + +(a, + a6)sin4 - +y2 sin4)sn, 

+ {a1 cos2 4 - +yz + +(a5 + C(6)}COS4snz 

+ { a I  c0s3 4D+ - f y 2  sin4cos4d2 + +a,d, 

+ (a, + a6)(sin4d, + c o s ~ d , ) c o s ~ } v ,  

+ {a l  cos +D+ + + y 2 d ,  + +(a, + a,)d,} sin4cos4vZ, 

0iz = {a ,  sin3 ~ C O S ~  + y 2  sin4zd, + +(a5 + a6)c0s 4 + + y 2  c o s ~ > s n ,  

+ { a I  sin2 4 + +y2  + +(a5 + a6)} sindsn, 

+ {a l  sin3 4D+ - +y2 sin 4cos$d, + +a4dz 

+ (a, + a6)(sin4dz + cos~dY)sing5}v, 

(A 1) 

+ {aI sin4D+ + + y 2 d ,  + +(a, + a6)d,}sin4cos4v,, 

d, = {2a1 sin’ 4 cos 4 + a2 sin 428, + a3 cos 4 + a6 cos 4}sn,  
+ {Za, cos2 4 sin4 + a3 cos +zd, - a2 sin 4 + a, sin+}sn, 

+ {a1 cos’ 4 sin 4D+ + +(a2 sin2 4 + a3 cos’ 4)az 
+ +a4az + a, cos 4 sin@, + $(a5 sin’ 4 + a6 cos’ 4)d,}v, 
+ {al sin’ ~ C O S  4D+ + +(al, sin’ 4 - a3 cos’ 4)8, 
+ +a4d, + a6 cos4sin@, + +(a5 sin’ 4 + a6 cos’ 4)d,}v,, 

06 = {2al sin2 ~ C O S ~  + a3 sin+zd, + a2 C O S ~  + a5 cos4}sn, 

+ {2a1 cos2 4sin 4 + a2 cos 4zd, - a3 sin4 + a6 sin4}snz 

+ { a l c o s 2 ~ s i n ~ D +  + +(-a3s in24  + ~ , c o s ~ ~ ) ~ ,  

+ +a,d, + a6 C O S ~  sin 48, + +(a6 sin’ 4 + as cos2 4)d,}v, 
+ {a ,  sin’ ~ C O S ~ D ,  + +(a3 sin’ 4 - a2 cos2 $)a, 
+ +a4d, + as cos4sin +a7 + +(a6 sin’ 4 + as cos2 4)d,}v,. 

(A 2) 

(A3) 

(A4) 

Appendix B 
If the terms explicit in z cannot be neglected in equations (5a-b), then the solution 

of these equations can no longer be written as sum of exponentials shown in equation 
(9). In this case the dependence in the z direction is more complicated and a solution 
periodic in the y direction will have the form 

(;) = exp(Ct+ ik j )  (;;) + C.C., 

where the functionsf(z) and g(z) have to be determined by numerical integration. We 
briefly sketch the numerical integration method. Equations 5(a-b) can be written in 
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562 B. J. A. Zielinska and A. ten Bosch 

the form of our first order differential equations with respect to z 

where m, = (d/dZ)n,, I?, = (d/dZ)C,, K, stands for K 2 ,  K3 and a, for a,, . . . , as. The 
matrix A' depends explicitly on Z, but does not contain derivatives with respect to Z. 
Using arbitrary boundary conditions for m, and EJ, at Z = - + it is possible to 
construct a solution satisfying 

n , ( - + )  = fix(- 3) = 0 and n , ( t )  = 0. 

The value of V ,  at Z = $ defines a function F 

F( i ,  k ,  5; K,, a,) = v,($) .  (B 3) 

The set of equations (B2) can then be solved numerically using the Runge-Kutta 
method of order four and the values of 0, k and S can be chosen such that 

P(S, k,  0; K,,  a,) = 0 (B 4) 

using the Newton-Raphson method. 
We have calculated the critical parameters S, 0 and k for several sets of values of 

K, and a,. We found that the convective terms change the values of the critical 
parameter Sc, and k,,, but the transition stays stationary, i.e. 0 = 0 in all of the cases 
considered. However we have encountered numerical difficulties for some values of 
the parameters. These numerical difficulties appear while calculating F = 0 as defined 
in equation (B 4) and have been previously encountered in numerical calculations of 
initial value problems [17]. They can already be anticipated from inspection of 
equation (9). If one of the 4,s has a large imaginary part, such that iq,Z > 0 for Z > 0, 
then this q, will dominate the solution. In the Newton-Raphson method F = 0 is 
found by combining two linearly independent solutions, which in practice means 
subtracting two large numbers. Consequently large Re (iq, ) requires high precision, 
which can exceed double or even quadrupole precision. When solution (9) is applic- 
able we have found in most cases that for the largest q, Re (4,) is of the order of 20. 
In the situation when solution (B 1)  is applicable, q, cannot be evaluated, but in some 
cases we have found that the available precision was not sufficient. In order to 
determine the values of the critical parameters in these cases more sophisticated 
methods of integration should be applied [ 171. 

With this method and for the set of realistic parameter values for PBG [15] 
(K,  = 0.36 x a, = -31, a2 = -33, a, = -0.16, a4 = 1.2, 
as = 26 and a6 = - 0.9) we found S,, = 1.092 x lo4 and k,, = 1.95. This gives for 
a sample thickness of 100 pm a critical shear rate s,, = 0.1 12 sp l  and periodicity of the 
pattern slightly larger than the thickness of the sample. This should be compared with 
scr = 0 . 0 6 4 ~ ~ '  reported in [ll]. 

We conclude, that inclusion of the convective terms in the equations changes the 
values of the critical parameters, but it does not change the nature of the transition. 
For some values of the material parameters more sophisticated numerical methods 
should be employed in order to avoid numerical difficulties. 

K3 = 0.4 x 
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